A Hessenberg Reduction Algorithm for Rank Structured Matrices

نویسندگان

  • Steven Delvaux
  • Marc Van Barel
چکیده

In this paper we show how to perform the Hessenberg reduction of a rank structured matrix under unitary similarity operations in an efficient way, using the Givens-weight representation which we introduced in an earlier paper. This reduction can be used as a first step for eigenvalue computation. We also show how the algorithm can be modified to compute the bidiagonal reduction of a rank structured matrix, the latter being a preprocessing step for computing the singular values of the matrix. Numerical experiments demonstrate the stability of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue computation for unitary rank structured matrices

In this paper we describe how to compute the eigenvalues of a unitary rank structured matrix in two steps. First we perform a reduction of the given matrix into Hessenberg form, next we compute the eigenvalues of this resulting Hessenberg matrix via an implicit QR-algorithm. Along the way, we explainhow the knowledge of a certain ‘shift’ correction term to the structure can be used to speed up ...

متن کامل

A multiple shift QR-step for structured rank matrices

Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving sem...

متن کامل

A new iteration for computing the eigenvalues of semiseparable (plus diagonal) matrices

This paper proposes a new type of iteration based on a structured rank factorization for computing eigenvalues of semiseparable and semiseparable plus diagonal matrices. Also the case of higher order semiseparability ranks is included. More precisely, instead of the traditional QR-iteration, a QH-iteration will be used. The QH-factorization is characterized by a unitary matrix Q and a Hessenber...

متن کامل

Numerical Behavior of the DQR Method for Rank-Structured Matrices

In this paper we consider fast numerical algorithms for solving certain modified matrix eigenvalue problems associated with algebraic equations. The matrices under consideration have the form A = T + uv , where u, v ∈ Rn×n and T = (ti,j) ∈ Rn×n is a tridiagonal matrix such that tj+1,j = ±tj,j+1, 1 ≤ j ≤ n−1. We show that the DQR approach proposed in [Uhlig F., Numer. Math. 76 (1997), no. 4, 515...

متن کامل

TR-2004009: A Reduction of the Matrix Eigenproblem to Polynomial Rootfinding via Similarity Transforms into Arrow-Head Matrices

We modify the customary approach to solving the algebraic eigenproblem. Instead of applying the QR algorithm to a Hessenberg matrix, we begin with the recent unitary similarity transform into a triangular plus rank-one matrix. Our novelty is nonunitary transforms of this matrix into similar arrow-head matrices, which we perform at a low arithmetic cost. The resulting eigenproblem can be effecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007